Christopher Makler
Stanford University Department of Economics
Econ 50: Lecture 5
Plus office hours at 3-5pm in Econ 151!
pollev.com/chrismakler
What song is playing right now?
ATTENDANCE QUESTION
FRIDAY
THURSDAY
So much free boba at Landau!!!
Econ Major welcome back event
4-6pm
Free boba for the first 40 students!
Part I: Simple Budget Constraints
Part II: More Complexity, More Realism
Choice space:
all possible options
Feasible set:
all options available to you
Optimal choice:
Your best choice(s) of the ones available to you
Choice Space
(all colleges plus alternatives)
Feasible Set
(colleges you got into)
Your optimal choice!
Preferences describe how the agent ranks all options in the choice space.
For example, we'll assume that you could rank all possible colleges
(and other options for what to do after high school) based upon your preferences.
Preference Ranking
Found a startup
Harvard
Stanford
Play Xbox in parents' basement
Cal
Choice space
Feasible set
Optimal
choice!
Found a startup
Stanford
Cal
Harvard
Play XBox in parents' basement
Optimal choice is the highest-ranking option in the feasible set.
Suppose each good has a constant price
(so every unit of the good costs the same)
Suppose you have a given income \(m\)
to spend on goods 1 and 2.
Then bundle \(X = (x_1,x_2)\) is affordable if
Example: suppose you have \(m = \$24\) to spend on two goods.
Good 1 costs \(p_1 = \$4\) per unit.
Good 2 costs \(p_2 = \$2\) per unit.
Is the bundle (2,4) affordable (in your budget set)? What about the bundle (4,6)?
Draw your budget set.
How would it change if the price of good 2 rose to \(p_2' = \$6\) per unit?
How would it change if your income rose to \(m' = \$32\)?
pollev.com/chrismakler
Holding income and the price of good 2 constant, an increase in the price of good 1 will cause the budget line to become:
steeper
flatter
it depends on thelevel of income
it depends on the price of good 2
Example:
Apples cost 50 cents each
Bananas cost 25 cents each
Slope of the budget line represents the opportunity cost of consuming good 1, as dictated by market prices.
In other words: it is the amount of good 2 the market requires you to give up in order to get another unit of good 1.
pollev.com/chrismakler
If apples (good 1) cost $0.80 each,
and bananas (good 2) cost $0.20 each, what is the magnitude (absolute value) of the slope of the budget line?
You have $100 in your pocket.
You see a cart selling apples (good 1) for $2 per pound.
Good 1
Good 2
Note: lots of different notation for the endowment bundle!
Varian uses \(\omega\), some other people use \(x_1^E\)
Suppose you'd like to move from that endowment to some other bundle X
You start out with some endowment E
This involves trading some of your good 1 to get some more good 2
Good 1
Good 2
If you can't find someone to trade good 1 for good 2 directly, you could sell some of your good 1 and use the money to buy good 2.
Suppose you sell \(\Delta x_1\) of good 1 at price \(p_1\). How much money would you get?
Suppose you wanted to buy \(\Delta x_2\) of good 2 at price \(p_2\). How much would that cost?
Good 1
Good 2
If the amount you get from selling good 1 exactly equals the amount you spend on good 2, then
monetary value of \(E\)
at market prices
monetary value of \(X\)
at market prices
(Basically: you can afford any bundle with the same monetary value as your endowment.)
Good 1
Good 2
If you sell all your good 1 for \(p_1\),
how much good 2 can you consume?
If you sell all your good 2 for \(p_2\),
how much good 1 can you consume?
If \(x_1 = 0\):
If \(x_2 = 0\):
Good 1
Good 2
Liquidation value of your endowment
Divide both sides by \(p_2\):
Divide both sides by \(p_1\):
In other words: the endowment budget line is just like a normal budget line,
but the amount of money you have is the liquidation value of your endowment.
Divide both sides by \(p_2\):
Divide both sides by \(p_1\):
The budget line only depends on the price ratio \({p_1 \over p_2}\),
not the individual prices.
What happens if the price of good 1 doubles?
What happens if both prices double?
pollev.com/chrismakler
Bob has an endowment of (8,8) and can buy and sell goods 1 and 2. What happens to his endowment budget line if the price of good 1 decreases? You may select more than one answer.
Tickets
Money
If you sell all your tickets,
how much money will you have?
If you spend all your money on additional tickets, how many tickets will you have?
Suppose you have 40 tickets and $1200.
1200
40
2200
Slope = \(p^{\text{sell}}\) = $25/ticket
Slope = \(p^{\text{buy}}\) = $60/ticket
You can sell tickets for $25 each,
or buy additional tickets for $60 each.
60
kWh
Money
Suppose you start out with \(m\) dollars.
What does your budget constraint look like?
300
\(m\)
Slope = $0.10/kWh
Slope = $0.20/kWh
Palo Alto has a tiered pricing policy for electricity rates. While it's changed in recent years, it used to be the something like the following:
\(m-30\)
Let \(x_1\) be kWh of electricity per month, and \(x_2\) be money spent on other things.
What do you think about this "proof"?
Are you only ever going to give cash from now on?